TEGAKARI
  • ホーム
  • 海外製品 新着情報 (ユニポス)
  • 研究開発用PC 構成事例 (テグシス)
  • 研究開発者向けサービス情報
    • レンタルサービス tegakari
  • 技術情報記事
  • バージョンアップ情報
  • テガラからのお知らせ
  • お問い合わせ
ピックアップ新着記事
  • [ 2025年7月11日 ] 電磁界解析向けワークステーション 研究用ワークステーション
  • [ 2025年7月9日 ] 大規模言語モデル計算処理向けマシン 研究用ワークステーション
  • [ 2025年7月8日 ] 大規模数値計算向けMAGMA専用マシン 研究用ワークステーション
  • [ 2025年7月7日 ] 第3回:若手研究×製品導入 導入実例で見る“研究の前進” 海外製品 新着情報 (ユニポス)
  • [ 2025年7月4日 ] 第2回:親切な個別対応で、研究費をムダなく活用! 海外製品も国内機器も安心導入ガイド 海外製品 新着情報 (ユニポス)

ホーム > 技術情報記事 > 【記事】「Metashape」のクラスタ構成での処理速度測定と傾向検証 (後編)

【記事】「Metashape」のクラスタ構成での処理速度測定と傾向検証 (後編)

2019年6月28日 テガラ株式会社 マルチメディア(映像・画像・音声)処理, 技術情報記事
■こちらは、2019年6月28日に投稿された記事のため、情報の内容が古い可能性があります。

先日公開を致しました前編の記事では、同じ仕様のマシン4台のクラスタ構成での「Metashape」の処理速度測定の実施とその傾向を検証しました。その結果を元に、こちらの後編では「CPUのコア数優先」処理の傾向を検証します。

※本ページの記事は「後編」となります。前編記事はこちら

検証環境について

計測は、前回同様の下記クラスタノードをベースとした構成に、CPUのコア数を増やした仕様を1台、CPUノードとして追加し、実施しました。

クラスタノード

CPU Intel Core i9 9900K (3.60GHz/TB5.0GHz, 8C/16T)
メモリ 40GB
SSD 1TB S-ATA
GPU Geforce RTX 2080Ti × 1
LAN Onboard(1GbE)
OS Microsoft Windows 10 Professional 64bit
Metashape Ver 1.5.2.7838

追加したCPUノードは以下のスペックとなります。CPUのコア数は2CPU構成で16コアとなり、2CPUのXeon仕様としては最上位クラスの定格クロックとTBクロックの構成となります。

CPUノード

CPU Xeon Gold 6144 (3.50GHz/TB4.20GHz, 8C/16T) × 2 (合計16コア)
メモリ 768GB
OS Microsoft Windows 10 Professional 64bit

 

処理内容について

今回行った処理はオルソ画像処理の一連のバッチ処理となります。この処理においては、前編で使用したDollのサンプルデータですと少し負荷が低めのため計測結果の差が判別しづらかったため、以下のようなデータを弊社で用意し、使用しました。

metashape_report2_drone.jpg

処理内容は前回同様、①MatchPhotos ②AlignCameras ③BuildDepthMaps ④BuildDenseCloud ⑤BuildModel ⑥BuildUV ⑦BuildTexture を実施します。

計測方法としては、上記CPUノード構成のマシンをCPUのみを使用する設定でノードとして使用し、ノード処理の優先順位をHighestに設定しております。これで⑤BuildModel~⑦BuildTexture でのCPU処理はこちらのノードで計算されることになります。ただし、他の処理においてもCPUでも計算する場合にはこのノードに処理が割り振られておりますので、個別の部分では多少の差異がある点はご注意ください。

Metshape側の処理は以下のパラメーターでの実施となります。

Aligen Photos : Highest
Build Dense Cloud : Ultra High
Build Mesh : High field&High
Build Texture : Orthophoto

(今回はBuild Meshの処理がHighクオリティとなります。理由に関しましては後述します)

処理結果について

まずは①MatchPhotos~⑦BuildTexture までの一通りのトータル処理時間を計算した結果です。

クラスタ 1台 (RTX 2080Ti × 1) 4時間33分01秒
クラスタ 2台 (RTX 2080Ti × 2) 3時間45分45秒
クラスタ 3台 (RTX 2080Ti × 3) 3時間33分33秒
クラスタ 4台 (RTX 2080Ti × 4) 3時間31分35秒
クラスタ 4台 (RTX 2080Ti × 4) + CPU Node
3時間17分09秒
比較用単体システム (RTX 2080Ti × 2) 4時間16分33秒

※比較用単体システムのスペックについては前編をご参照ください

次に前編と同様に各フェーズについて検証します。

metashape_report2_img1.jpg

(Y軸=経過時間 : グラフが長いほど処理に時間がかかっている)

#単独システムの場合はログの出方が異なるため、上記のグラフには載せていません。

予想通り、⑤BuildModel~⑦BuildTextureの部分でCPUノードを追加した場合に大きな変化が見られました。同一ノードのみで実施の場合は前回同様に処理時間は横並びですが、CPUノードに処理をさせた事で差が発生しました。⑤BuildModelと⑦BuildTextureに関しては処理時間が短くなり、逆に⑥BuildUVに関しては長くなっています。

ここで改めて今回のクラスタノードとCPUノードのCPUを比較します。

クラスタノード

CPU Intel Core i9 9900K(3.60GHz/TB5.0GHz 8C/16T) ×1

CPUノード

CPU Xeon Gold 6144 (3.50GHz/TB4.20GHz 8C/16T) × 2 (合計16コア)

 

クラスタノード側の方が単独コアの動作速度は速く、CPUノード側の方がコア数が多いといった関係になります。ここから、⑤BuildModel 及び ⑦BuildTexture時間はコア数が有効に働く処理であり、⑥ BuildUVは単独コアの動作速度が重要であるということが推測されます。

また、④BuildDenseCloudの処理時間については、4ノード(クラスタ4台)の結果よりも時間がかかっています。これはGPU処理よりも処理速度が遅いCPUにCPUノードが増えた分だけ処理が分散されてしまい、GPU搭載のクラスタノードは処理が終わっていても、CPU側の処理が終わらず、その処理が終了するのを待ってしまっていた結果と推測されます。実際にはこの処理はログ上では複数の処理に分割され (今回の検証においては106~108程度)、処理が終わったら次の処理…と渡されていくため、分割された最後の処理が終わるタイミングによっては逆に処理時間は速くなる可能性も考えられます。

なお今回のクラスタノードは同一のCPU/GPU構成ですが、異なるCPUやGPUでの構築をされた場合、速度の遅いCPUやGPUなどがこの処理でボトルネックになる可能性があるということが考えられます。

最後に、「処理内容について」の項目で挙げました、Build Meshの処理をUltra Highで実施しなかった理由については『実施できなかったため』となります。1クラスタあたり40GBのメモリでは今回のデータを処理するのには足りず、処理が進みませんでした。

潤沢にメモリをもっているCPUノード構成 (768GB)の場合はUltra Highでも処理が可能でしたので、Build Meshに関してはノード1台に処理が集中してしまう関係上、その1台に十分なメモリが必要であると推測されます。

まとめ

以上、クラスタを利用したMetashapeの処理速度の検証結果となります。

前編・後編を通してのここまでのデータを元に検討しますと、④BuildDenseCloud処理まではクラスタ構成が有利ですが、それ以降の処理についてはあまり効果的ではないと言えそうです。

また、上記でも触れております通り、Build Meshなどの処理は結局の所、1台のCPUで処理をする必要があり、その1台に十分なメモリ容量も必要となってきます。クラスタ構成を検討する場合でも、全体の処理として考えた場合に、メモリが足りない事により必要としている処理ができないという可能性がございますので、少なくとも1台は十分なメモリを積んだPCを用意していただくのがよろしいかと思います。

単独クロックの速いCPUを選択しても、搭載できるメモリ容量には上限がありますので、メモリ搭載量の面で見れば、Xeonシステムのほうが有利となります。そのため、単純に単独クロックが速いCPUがお勧めとも言い切れないところがあります。
※今回検証に使用したCPU (Core i9 9900K)は64GBまでのメモリに対応となります (2019年4月時点。将来のRevでは128GBに対応が予定されています)。

現状でMetashapeクラスタ構成を検討する場合、通常は個別で利用しているMetashapeを、大規模な処理が必要な場合に一時的にクラスタとして利用する使い方や、④BuildDenseCloud処理までの作業を行わせるサーバーファームとしての運用等が考えられます。

なお、今回の検証では速度計測をメインにおいておりましたので、すべて1ジョブのみで実施をしておりましたが、当然複数のジョブを実行することも可能です。この場合、処理がBuild Meshに入った時点で、計算している1台のマシン以外がフリーになった場合には次のジョブが走り始めますので、複数のジョブを投げて短時間で処理をさせるという用途でもクラスタ構成は有効であると思われます。

  • GIS
  • 測量
  • フォトグラメトリー
  • Metashape検証
  • 空撮

この記事を読んだ方はこんな記事も読んでいます

マルチメディア(映像・画像・音声)処理

3Dモデル作成ソフトウェア「PhotoModeler」のライセンス形態変更のお知らせ

2022年7月7日 テガラ株式会社 工学, マルチメディア(映像・画像・音声)処理, 海外製品 新着情報 (ユニポス), バージョンアップ情報

ユニポスWEBサイトにて掲載しております、3Dモデル作成ソフトウェア PhotoModelerのラインアップとライセンス形態が変更になりました。 旧ラインアップ […続きを見る]

研究開発用PC 構成事例 (テグシス)

空撮写真から3Dモデルを作成するためのマシン

2021年6月25日 テガラ株式会社 研究開発用PC 構成事例 (テグシス)

■こちらは、2021年6月25日に投稿された記事のため、情報の内容が古い可能性があります。 お客様より、DJI Mavis Pro2で撮影した空撮写真 4000 […続きを見る]

化学

データ可視化のためのソフトウェア「LightningChart Ultimate SDK」

2015年10月6日 テガラ株式会社 化学, 工学, 医学・看護学・薬学, アプリケーション開発・プログラミング, 海外製品 新着情報 (ユニポス)

■こちらは、2015年10月6日に投稿された記事のため、情報の内容が古い可能性があります。 ユニポスWEBサイトに、データ可視化のためのソフトウェア  Ligh […続きを見る]

サイト内検索:

テガラ株式会社 YouTube動画

【IR Pass Filter の効果】RealSense D435 と D435f でホワイトボードを撮影

最新の投稿動画を表示しています。
この他の動画はテガラ株式会社 Youtubeチャンネルをご覧ください

人気の記事 (過去7日間のアクセスランキング)

  • 【製品紹介】Leap Motion Controller 2 – 手や指の動きを認識するハンドトラッキングカメラ 2023年6月9日
  • プロジェクションマッピングソフトウェア「MadMapper」の 最新バージョン 5 が正式リリースされました 2021年12月23日
  • furix BetterWMF and CompareDWG tools for AutoCAD 【製品紹介】Beyond Compare:ファイル、フォルダの比較・統合・同期ユーティリティ 2022年11月18日
  • 3Dカメラ 8種類を 様々な環境で比較しました 【その② 屋内編】 2020年9月7日
  • 【機能比較】Azure Kinect DK と Orbbec Femto Bolt の違いは? 2023年9月26日

最新投稿記事

  • 電磁界解析向けワークステーション
    2025年7月11日
  • 大規模言語モデル計算処理向けマシン
    2025年7月9日
  • 大規模数値計算向けMAGMA専用マシン
    2025年7月8日
  • テグシスxユニポスxTKS 若手研究者応援キャペーン
    第3回:若手研究×製品導入 導入実例で見る“研究の前進”
    2025年7月7日
  • 若手研究者応援キャンペーン × ユニポス.net
    第2回:親切な個別対応で、研究費をムダなく活用! 海外製品も国内機器も安心導入ガイド
    2025年7月4日

注目のタグ

解析ツール (56) 3Dカメラ (55) 機械学習(マシンラーニング) (53) AI (47) ロボティクス (45) VR (44) ロボットアーム (42) バイオインフォマティクス (42) RealSense (41) 統計解析 (39) 動画・映像 (37) DeepLearning (37) デプスカメラ (36) SBC (36) 計装 (35) 小型SBC (35) IoT (35) スペクトル (33) シミュレーション (33) データ解析 (31) 第一原理 (29) Python (29) サイバーセキュリティ (28) JavaScript (27) 化学 (27) 次世代シーケンサー (27) AR (27) .NET (26) 車載 (25) 画像処理 (25) Metashape (25) 画像解析・画像検査 (25) LIDAR (25) MATLAB (24) UI (24) フォトグラメトリー (23) 分子生物学 (22) サポート (22) プロトタイプ (22) 教育ロボット (22) 3Dモデル (22) 計測器 (21) Web開発・制作 (21) テストツール (20) マテリアル (20) GIS (20) ドローン (19) ROS (19) 電磁界解析 (19) ロボット (19) アニメーション (19) モバイルロボット (19) ロボットハンド (19) 可視化 (19) セキュリティー (19) 心理学 (19) 遺伝子 (18) 脳波 (18) プログラミング (18) ToF (18) 自律走行車 (18) プロトコル (18) CAE (17) トラッキング (17) Raspberry Pi (17) 3Dプリンタ (17) モーションキャプチャ (17) ディープラーニング (17) 臨床 (17) DNA (17) チャート (16) 産業用 (16) 3Dモデリング (16) バイオアッセイ (16) 構造解析 (16) モデリング (16) 教育 (16) Arduino (15) ライブラリ (15) 生物統計学 (15) 動画編集 (15) 流体解析 (15) 3Dスキャン (15) AR/VR (15) RNA (15) 医薬品開発 (15) 分子動力学 (15) 装置制御 (14) 情報発信12月号 (14) SLAM (14) マルウェア (14) 農業・農学 (14) 2022年7月 配信記事 (14) 周辺機器 (14) 写真 (14) CUDA (14) 刺激呈示 (14) CFD (14) 2022年8月 配信記事 (14) 測量 (13) 数値解析 (13) 熱流体解析 (13) 24時間稼働 (13) 音声処理 (13) ゲノム解析 (13) 無線 (13) IDE(統合開発環境) (13) 3DCAD (13) 制御 (13) STEM/STEAM教育 (13) 開発・評価キット (13) 監視 (13) デプスセンサ (13) ナノ構造材料 (13) 情報発信22年3月号 (12) CAD (12) DeepLabCut (12) 遠隔操作(リモートコントロール) (12) キャプチャグローブ (12) 自然科学 (12) FDTD法 (12) Looking Glass (12) GPGPU (12) 情報発信22年4月号 (12) 量子化学計算 (12)
分野別に情報を探す – Category
  •  人文学・社会科学
  •  数物系科学
  •  化学
  •  工学
  •  医学・看護学・薬学
  •  生物学・農学
  •  情報学
 
  •  人工知能
  •  ロボティクス
  •  センサー技術
  •  開発キット・電子工作
  •  デジタルガジェット
  •  自動車・車両(vehicle)関連
  •  産業用通信技術
  •  アプリケーション開発・プログラミング
  •  ネットワーク・セキュリティ
  •  マルチメディア(映像・画像・音声)処理
  •  業務支援・効率化ツール
Translate
お問い合わせフォーム – Contact
TEGAKARI へのお問い合わせはこちら
サイト内リンク
プライバシーポリシー
運営WEBサイト (サービス)
テガラ株式会社
テガラ株式会社コーポレートサイト

UNIPOS
研究開発者向け海外製品調達・コンサルテーションサービス

テグシス
研究用・産業用PCの製作・販売サービス
SNSアカウント
  • Twitter
  • YouTube
  • Facebook

テガラ株式会社

テガラは、研究開発者さまに有用な製品・サービス・情報を統合的 (integrated) に提供するプラットフォームです。「研究開発を加速するお手伝い」

Copyright © 2020 | テガラ株式会社